鋁合金綠燈行電纜是在普通鋁的基礎上加入微量元素作為導體的電纜形式,雖然是純鋁電纜升級版本,相對于鋁芯電力電纜來說,確實在性能上有了很大的提高,但與銅電力電纜相比仍有明顯的比較劣勢。
(1) 鋁合金電纜的導電性較差。
鋁合金電纜導電率只有銅電纜的61%。相同電纜截面下,偏大的電阻必然造成線損偏高,降低能源利用效率。相同載流量條件下,鋁合金電纜電阻率總是略大于銅電纜。
以負荷電流380A,年利用小時數4500h,運行壽命30年為例,銅電纜截面若采用150mm2,則鋁合金電纜截面需240mm2,兩者的電阻率分別是0.148 /km和0.150 /km,年能耗為288495kwh/km和292410kwh/km,全壽命周期內兩者能耗差為117450kwh/km〔3〕。顯然全壽命周期內鋁合金電纜的損耗偏大,背離國家“節能減排”的發展方向。
(2)鋁合金電纜載流量偏低。
城市電網供電可靠性要求達到99.99%,核心區需達到99.999%的更高水平。由于城市電纜網采用環網結構,故障情況下短時間內保護動作,迅速將負荷切轉至對側線路,確保不間斷用戶供電。
但要實現電網高可靠性,完善的網絡結構、優良的設備和線路都是必不可少的。電網中的供電線路必須具有較高的載流量,除自身負荷外還能承擔臨時切換負荷。同等截面的銅芯電纜比鋁合金電纜的載流量高出30%以上,顯然更能滿足城市供電可靠性的要求。
(3)鋁合金電纜機械抗拉強度低。
鋁合金電纜的抗拉強度只有銅電纜的46%,允許牽引力比銅電纜低60%。城市配電網大量采用電纜環網結構,規劃設計上考慮盡量減少電纜中間接頭的使用。實際使用中,單根銅電纜敷設長度一般在600~800米區間。
考慮在同等載流量條件下,單根普鋁電纜的敷設長度僅為500米?紤]牽引力的影響,單根鋁合金電纜的敷設長度只有350米。顯然抗拉強度偏低必然導致單次牽引電纜的長度受限,需額外增加大量中間接頭,增加后續運行維護風險。
(4)鋁合金電纜耐腐蝕性能弱。
電纜導體的腐蝕主要是金屬電化學腐蝕,即在金屬表面發生原電池或雜散電流干擾引起的電解電池作用。鋁合金電纜在生產工藝中為了改善抗蠕變性能加入了鎂、銅、鋅、硅等元素,并增加熱處理工序。
由于電纜運行工況復雜,在含有電解質的環境中,電極電位更低的鋁與其他加入的金屬元素存在電極差,從而形成電流通路,發生孔蝕和裂隙腐蝕等電化學現象。鋁合金電纜熱處理工藝還容易造成導體表面物理狀態不均勻,增加電化學腐蝕的可能,繼而發生應力腐蝕裂紋和晶間腐蝕。
(5)鋁合金電纜耐高溫性能差。
銅的熔融點為1080 ,而鋁的熔融點僅為660 ,顯然銅導體是耐火電纜更好的選擇;馂那闆r下,中心環境溫度可上升到750 以上,電纜必須能夠維持通電的基本功能以構筑生命保障線。顯然當火場溫度高于鋁合金和鋁的熔融點后,無論采取何種隔熱措施,電纜導體都會在短時間內發生融化,喪失導電功能,從而嚴重影響火場人員安全疏散。